Feedback Loop

Negative feedback

A Negative feedback occurs when the fed-back output signal has a relative phase of 180° with respect to the input signal. This situation is sometimes referred to as being out of phase, but that term also is used to indicate other phase separations, as in “90° out of phase”. Negative feedback can be used to correct output errors or to desensitize a system to unwanted fluctuations. In feedback amplifiers, this correction is generally for waveform distortion reduction or to establish a specified gain level. A general expression for the gain of a negative feedback amplifier is the asymptotic gain model.

Positive feedback

Positive feedback occurs when the fed-back signal is in phase with the input signal. Under certain gain conditions, positive feedback reinforces the input signal to the point where the output of the device oscillates between its maximum and minimum possible states. Positive feedback may also introduce hysteresis into a circuit. This can cause the circuit to ignore small signals and respond only to large ones. It is sometimes used to eliminate noise from a digital signal. Under some circumstances, positive feedback may cause a device to latch, i.e., to reach a condition in which the output is locked to its maximum or minimum state. This fact is very widely used in digital electronics to make bistable circuits for volatile storage of information.

The loud squeals that sometimes occurs in audio systems, PA systems, and rock music are known as audio feedback. If a microphone is in front of a loudspeaker that it is connected to, sound that the microphone picks up comes out of the speaker, and is picked up by the microphone and re-amplified. If the loop gain is sufficient, howling or squealing at the maximum power of the amplifier is possible.

Oscillator

An electronic oscillator is an electronic circuit that produces a periodic, oscillating electronic signal, often a sine wave or a square wave. Oscillators convert direct current (DC) from a power supply to an alternating current signal. Common examples of signals generated by oscillators include signals broadcast by radio and television transmitters, clock signals that regulate computers and quartz clocks, and the sounds produced by electronic beepers and video games.

Oscillators are often characterized by the frequency of their output signal:

  • A low-frequency oscillator (LFO) is an electronic oscillator that generates a frequency below ≈20 Hz. This term is typically used in the field of audio synthesizers, to distinguish it from an audio frequency oscillator.
  • An audio oscillator produces frequencies in the audio range, about 16 Hz to 20 kHz.
  • An RF oscillator produces signals in the radio frequency (RF) range of about 100 kHz to 100 GHz.

Oscillators designed to produce a high-power AC output from a DC supply are usually called inverters.

There are two main types of electronic oscillator: the linear or harmonic oscillator and the nonlinear or relaxation oscillator.

Leave a Reply

Your email address will not be published.